

LA-UR-21-20762

Approved for public release; distribution is unlimited.

Title: Nuclear Data Needs for Space-based Nuclear Detonation Detection

Author(s): Gerts, David Walter

Soltz, R. A.

Intended for: Nuclear Data Working Group 2021, 2021-01-25/2021-02-02 (Virtual, New

Mexico, United States)

Issued: 2021-01-28

Nuclear Data Needs for Space-based Nuclear Detonation Detection

David Gerts, LANL Ron Soltz, LLNL January 29, 2021

Space-based Nuclear Detonation Detection (SNDD)

- Support nuclear treaty verification
- Three space platforms:
 - GPS (navigation + SNDD) at medium earth orbit
 - Defense Support Program and Space and Atmospheric Burst Reporting System at geosynchronous orbit
 - Geometric dispersion is ~5x10⁻²¹ particles/cm² at geosynchronous orbit
- Nuclear emissions at different altitudes create different signals
 - In air:
 - Hot plasma create x-rays which cause air expansion hot enough to emanate in optical regime
 - Prompt gamma rays create free electrons which turn in magnetic field to emanate in <u>radiofrequency</u> domain
 - In space:
 - X-rays, prompt gamma rays, delayed gamma rays, and neutrons travel freely
 - In between:
 - Some of each, depending...

1/26/2021

Pertinent Timeframes and Energy Domain (Delayed Gamma Rays and Neutrons)

- Timeframe spans approximately 100 ns to 100 s
 - Prompt gamma ray signals are early time (<1 ms)
 - Delayed gamma ray signals from ~1 ms to 100 s
 - Neutrons arrive over ~1ms to 100 s
- Energy domain is ~1 keV to ~20 MeV
 - Neutrons arrive with energies through entire energy domain
 - Both prompt and delayed gamma rays from ~100s keV and ~8 MeV
 - Due to both transmission through atmosphere and detector choices

Early Time Delayed Gamma Ray Needs

- Significant difficulties and uncertainties in early time gamma ray emissions from fission fragments
 - 100 microsec to about 100 ms
 - Short-lived isomeric decays
 - Bounds on broad energy grouping
 - Half-lives of isomeric isotopes
 - Production estimates from U-235, U-238, Pu-239

*Extracted from Effects of Nuclear Weapons, pg. 328

Impact of Accurate Fission Product Production

Key needs:

- More incident neutron energies
 - Pu-239 now has epithermal fission
 - Forward modeling of source is limited by lack of smooth transition from asymetric to symmetric fission
 - Predicting isotopic ratios is carries more uncertainty than simply using current accepted values
- Isotopic decay half-lives ~0.5 s can have significant uncertainties
 - 0.5 s ± 0.5 s makes for broad uncertainty estimates
 - Can cause naive network decays schemes using linear solvers to become very stiff
 - Alternate methods have been developed
 - » Integral methods, exponential moment methods, secular equilibrium approximations, etc.
- Less impactful data
 - Low probability production events (<1/10⁸ fission events)

Importance of Uncertainty Quantification

- All senior leadership reporting characterizes or attempts to quantify uncertainty
 - Identification has a confidence reported
 - Other quantities of interest use best value and uncertainty bound
- Implementing approach to estimate uncertainty in delayed gamma rays using declared ENDF uncertainty
 - Initiative to include Monte Carlo sampling of half-life and energy uncertainties for forward modeling
 - Encapsulating uncertainty in results is ongoing challenge

1/26/2021

Improvements from Recent Measurement Campaigns

- Extracted from "Measurement of Short-Lived Fission Product Yields for ²³⁷Np via γ -ray Spectroscopy", dated 1 November 2020, by Sean Burcher
- Results from this experiment will be compared to FPYs of ²³⁵U, ²³⁸U, ²³⁹Pu, and ²³³U
 - 235U, 238U, and 239Pu irradiations have been completed
 - See A. Tamashiro's talk (SQ.0007) later in this session for ²³⁹Pu work
 - ²³³U irradiation planned for early/mid 2021
 - Self-consistent FPY results for 5 actinides
 - All irradiations utilized GODIVA
 - All γ -ray count utilized the same experimental setup
 - All data will be analyzed/re-analyzed with the codes developed in this work
- Full Results to be published in future Nuclear Data Sheet Article

Questions?